Department of Mathematics Final Exam

Two Hours

Calculators, cellular phones and all other mobile communication equipments are not allowed

Answer the following questions. Each question weighs 4 points.

1. Evaluate the following limits, if they exist:

(a)
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{x^2 + x}\right).$$

(b)
$$\lim_{x\to 0} x^{\frac{2}{3}} \sin \frac{1}{x}$$
.

2. Suppose that $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both exist.

If
$$\lim_{x\to a} [f(x) + g(x)] = 5$$
 and $\lim_{x\to a} [f(x) - g(x)] = 1$, then find $\lim_{x\to a} [f(x)g(x)]$.

- 3. Show that $f(x) = x^5 + x^3 1$, has exactly one real root in [0, 1].
- 4. A farmer has 1600 meters of fencing and wants to fence off a rectangular field that borders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?
- 5. Find $\frac{dy}{dx}$, where

(a)
$$y = (x^2 - 5)^3 \sin(x^4 - 3x + 1)$$
.

(b)
$$y = \int_{1}^{\cos x} \frac{1 - u^2}{1 + u^6} du$$
.

6. Evaluate:
$$\int \frac{5 - 4x^3 + 2x^6}{x^6} dx + \int x^{-\frac{3}{4}} \cos\left(2 + x^{\frac{1}{4}}\right) dx.$$

7. Evaluate:
$$\int_{0}^{2} |x^2 - 1| dx.$$

- 8. Find the average value, f_{av} , of $f(x) = \sec^2 x$ over the interval $\left[0, \frac{\pi}{4}\right]$.
- 9. Find the area of the region bounded by the curves $x = y^2$ and $x = -y^2 + 2$.
- 10. The region bounded by the curves $y = 4x x^2$ and y = 3 is revolved about:
 - (a) the line x = 1,
 - (b) the line y = -1.

Set up an integral that can be used to find the volume of the resulting solid in each